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We test our neurocomputational model of fronto-striatal dopamine (DA) and noradrenaline (NA) function for understanding cognitive

and motivational deficits in attention deficit/hyperactivity disorder (ADHD). Our model predicts that low striatal DA levels in ADHD

should lead to deficits in ‘Go’ learning from positive reinforcement, which should be alleviated by stimulant medications, as observed with

DA manipulations in other populations. Indeed, while nonmedicated adult ADHD participants were impaired at both positive (Go) and

negative (NoGo) reinforcement learning, only the former deficits were ameliorated by medication. We also found evidence for our

model’s extension of the same striatal DA mechanisms to working memory, via interactions with prefrontal cortex. In a modified

AX-continuous performance task, ADHD participants showed reduced sensitivity to working memory contextual information, despite

no global performance deficits, and were more susceptible to the influence of distractor stimuli presented during the delay. These effects

were reversed with stimulant medications. Moreover, the tendency for medications to improve Go relative to NoGo reinforcement

learning was predictive of their improvement in working memory in distracting conditions, suggestive of common DA mechanisms and

supporting a unified account of DA function in ADHD. However, other ADHD effects such as erratic trial-to-trial switching and reaction

time variability are not accounted for by model DA mechanisms, and are instead consistent with cortical noradrenergic dysfunction and

associated computational models. Accordingly, putative NA deficits were correlated with each other and independent of putative

DA-related deficits. Taken together, our results demonstrate the usefulness of computational approaches for understanding cognitive

deficits in ADHD.
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INTRODUCTION

Attention deficit/hyperactivity disorder (ADHD) is a
common childhood-onset psychiatric condition character-
ized by age-inappropriate levels of inattention and/or
hyperactivity-impulsivity (APA, 1994). Despite widespread
public skepticism regarding the legitimacy of ADHD as a
disorder, several recent findings demonstrate clear biologi-
cal underpinnings. These findings include multiple genetic
factors, ADHD-related differences in brain structure and
function, and changes in neurotransmitter components
within the fronto-striatal system (for recent reviews, see

Castellanos et al, 2006; Krain and Castellanos, 2006; Faraone
et al, 2005). The main functional deficits of ADHD are less
clear. Neuropsychological studies reveal executive function
deficits, with particularly reliable impairments in response
inhibition (Willcutt et al, 2005). However, the modest effect
sizes in these studies suggest that executive dysfunction is
neither necessary nor sufficient to account for ADHD
symptoms. Other findings point to key deficits in motiva-
tional/reward processes (Luman et al, 2005; Sagvolden et al,
1998; Aase et al, 2006) and suggest that these are largely
independent of response inhibition deficits (Solanto et al,
2001; Toplak et al, 2005). These findings have led to a
‘dual-pathway’ hypothesis for ADHD. In one pathway,
executive function and response inhibition deficits result
from impaired circuitry linking dorsal striatum and
dorsolateral prefrontal cortex. In the second pathway,
motivational deficits result from reduced processing in
ventral striatal-orbitofrontal circuits (Sonuga-Barke, 2003;
Castellanos et al, 2006).
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In this paper, we take a somewhat different approach,
motivated by principles developed within neurocomputa-
tional models of cognition. We use this computational
framework to make predictions about the mechanisms that
produce cognitive and motivational deficits in ADHD. In
particular, our models simulate dynamic dopamine (DA)
interactions within circuits linking the basal ganglia (BG)
with frontal cortex (Alexander et al, 1986) and explore their
implication in action selection, reinforcement learning,
working memory, and decision making (Frank et al, 2001;
Frank, 2005, 2006; O’Reilly and Frank, 2006; Frank and
Claus, 2006) (for details about the models, see Figure 1 and
the articles cited above). These models are explicit about the
nature of neural interactions and demonstrate how
cognitive and motivational processes can emerge from
network dynamics. They have provided insight into the
source of cognitive deficits in patients with Parkinson’s
disease and those with orbitofrontal damage (Frank, 2005;
Frank and Claus, 2006), making novel predictions that have
been confirmed in experiments with medicated and
nonmedicated Parkinson’s patients, experiments with
healthy participants taking dopamine D2 agonists and
antagonists, and electrophysiological studies (Frank et al,
2004, 2005; Frank and O’Reilly, 2006). Here we test model
predictions in ADHD participants on and off stimulant
medications in reinforcement learning and working mem-
ory tasks. We show that a single mechanism (reduced DA in
the striatum) can account for both motivational and
working memory deficits, while another (likely noradrener-
gic) mechanism may account for other behaviorally
independent aspects of the disorder.

Dopamine Dysfunction in ADHD

There is a growing body of evidence that ADHD is
associated with low levels of striatal DA (eg, Sagvolden
et al, 2005; Biederman and Faraone, 2002; Solanto, 2002). In

a comprehensive review of the biological basis of ADHD,
the authors concluded that decreased dopaminergic func-
tion in three separate striato-cortical loops led to deficits in
reinforcement and extinction behaviors (Sagvolden et al,
2005). Reduced striatal DA has also been demonstrated in
human ADHD participants. Both children and adults with
ADHD have abnormally high densities of striatal dopamine
transporters (DATs), so that too much DA is removed from
the synapse (Dougherty et al, 1999; Krause et al, 2000). This
finding is also supported by altered DAT genetic factors in
ADHD (Faraone et al, 2005; Todd et al, 2005). There has
been some disagreement about whether both tonic and
phasic DA levels are reduced in ADHD. In fact, some early
accounts argued that low tonic DA levels actually lead to
enhanced phasic DA, due to reduced tonic DA stimulation
onto inhibitory autoreceptors (Grace, 2001; Solanto, 2002).
It was further argued that stimulant medications normalize
DA dysfunction by enhancing tonic DA and decreasing
phasic DA (Seeman and Madras, 2002). However, other data
show that stimulants do not have preferential action on
autoreceptors at any dose (Ruskin et al, 2001). The
enhanced phasic DA hypothesis has since been rejected by
some authors, who now believe that ADHD is associated
with reduced levels of both tonic and phasic DA (Madras
et al, 2005; Sagvolden et al, 2005). This view is supported by
evidence that stimulants increase both extracellular striatal
DA (Volkow et al, 2001), and synaptic DA associated with
phasic responses (Schiffer et al, 2006). This medication-
induced increase in phasic DA is thought to provide a
focusing and teaching signal in ADHD (eg, Schultz, 2002).
Furthermore, stimulants increase DA release to a greater
extent in striatum than in prefrontal cortex (Mazei et al,
2002; Madras et al, 2005), likely due to the far greater DAT
density in striatum (Sesack et al, 1998; Cragg et al, 2002).
This suggests that phasic DA effects of ADHD and
associated medications may be particularly relevant in the
striatum. Nevertheless, increases in striatal activity can lead
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Figure 1 (a) The striato-cortical loops, including the direct (‘Go’) and indirect (‘NoGo’) pathways of the BG. Striatal Go cells disinhibit the thalamus via
GPi, thereby facilitating the execution of an action represented in cortex. The NoGo cells have an opposing effect by increasing inhibition of the thalamus,
suppressing actions from getting executed. Dopamine from the SNc projects to the dorsal striatum, causing excitation of Go cells via D1 receptors, and
inhibition of NoGo via D2 receptors. Noradrenaline from the LC modulates activity in frontal cortex. GPi: internal segment of globus pallidus; GPe: external
segment of globus pallidus; SNc: substantia nigra pars compacta; STN: subthalamic nucleus; LC: locus coeruleus. (b) Our neural network model of this circuit
(Frank, 2005; Frank et al, in press), where squares represent units, with height reflecting neural activity. The Premotor Cortex selects an Output response via
direct projections from the sensory Input, and is modulated by the BG projections from Thalamus. Go units are in the left half of the Striatum layer; NoGo in
the right half, with separate columns for the two responses (R1 and R2). In the case shown, striatum Go is stronger than NoGo for R1, inhibiting GPi,
disinhibiting Thalamus, and facilitating R1 execution in cortex. A tonic level of dopamine is shown in SNc; a burst or dip ensues in a subsequent
reinforcement phase (not shown), driving Go/NoGo learning. The STN exerts a dynamic ’Global NoGo’ function on the execution of all responses,
complementing the response-specific striatal NoGo cells (Frank, 2006). The LC dynamically modulates the gain of premotor units, increasing the signal-to-
noise ratio and modulating variability in reaction times. Similar models have been used to simulate interactions between the BG and prefrontal cortices in
working memory and decision making (not shown; O’Reilly and Frank, 2006; Frank and Claus, 2006).
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to indirect effects in frontal cortex, via systems-level
interactions (Alexander et al, 1986). Supporting this notion,
stimulant induced enhancements in activity and plasticity
in the striatal ‘direct pathway’ were highly correlated with
increases in frontal cortical activity (Yano and Steiner,
2005).

The above evidence suggests that ADHD is associated
with reduced tonic and phasic striatal DA levels, which are
alleviated by stimulant medications. However, exactly how
would these effects propagate through the system to affect
behavior? Our computational models suggest that healthy
levels of DA are required to dynamically modulate the
balance of ‘Go’ and ‘NoGo’ pathways in the striatum. Via
systems-level interactions, these pathways act to facilitate or
suppress the execution of actions represented in frontal
cortex. Actions range from lower-level motor programs (in
premotor areas) to higher-level working memory updating
and decision making (in dorsolateral prefrontal and
orbitofrontal areas). In particular, phasic DA signals that
occur during positive and negative reinforcement (eg,
Schultz, 2002) drive learning in the models to facilitate the
selection of rewarding actions and to prevent selection of
those that are less rewarding (Frank, 2005). In the working
memory domain, these DA signals drive updating of task-
relevant information into dorsolateral prefrontal working
memory representations (O’Reilly and Frank, 2006), and
similarly facilitate the maintenance of long-term reward
values in orbitofrontal areas for use in decision making
(Frank and Claus, 2006). If striatal DA is reduced in ADHD,
the models predict ADHD-related deficits in (i) positive
(Go) reinforcement learning; (ii) selective updating of task-
relevant information into working memory; and (iii)
modulation of long-term reward information needed for
decision making. Predictions for aversive (NoGo) reinforce-
ment learning are somewhat more ambiguous, given that
multiple brain mechanisms contribute to this learning,
some of which may also be compromised in ADHD.
Nevertheless, the models clearly predict that all the above
deficits should be ameliorated by stimulant medications
which increase DA signals and selectively enhance plasticity
in striatal Go cells (eg, Yano and Steiner, 2005; Yano et al,
2006). Thus, we predicted that medications would selec-
tively enhance Go but not NoGo learning in ADHD.

Noradrenaline Dysfunction in ADHD

Nevertheless, it is clear that ADHD is not a unitary disorder
(Castellanos et al, 2006; Nigg and Casey, 2005; Diamond,
2005), and other behavioral symptoms of ADHD are not
easily explained by the reduced DA hypothesis. For
example, ADHD participants typically show more within-
subject variability in their reaction times (Leth-Steensen
et al, 2000; Lijffijt et al, 2005; Castellanos et al, 2005).
Although DA modulates the overall reaction time in our
models (by modulating Go vs NoGo pathways in the
striatum; Frank, 2005), it is not immediately evident how
low levels of DA would lead to more variability in RTs
across trials (but see General Discussion for alternative
accounts). In contrast, both computational and experimen-
tal work have shown that cortical noradrenaline (NA)
signals do affect response variability (Usher et al, 1999;
Aston-Jones and Cohen, 2005; Frank et al, in press). The

models show that phasic NA release leads to ‘sharper’ motor
cortical representations and a tighter distribution of
reaction times, whereas a high tonic but low phasic state
is associated with more RT variability. Further, increases in
tonic NA levels are thought to enable the representation of
competing cortical representations during exploration of
new behaviors, which may also lead to erratic behavior.
In accord with these computational accounts, we have
previously proposed that some aspects of response varia-
bility and response inhibition effects in ADHD can be
accounted for by cortical NA dysfunction (Frank et al, in
press; see also Zametkin and Rapoport, 1987; Arnsten et al,
1996; Aron and Poldrack, 2005). The NA hypothesis is
supported by evidence for elevated frontal cortical NA levels
in a rat model of ADHD (Russell and Wiggins, 2000; Russell
et al, 2000). In human ADHD participants, RT variability is
correlated with noradrenergic (and not dopaminergic)
measures (Llorente et al, 2006). In addition, deficits in
response inhibition are ameliorated by selective NA
transporter blockers (eg, Swanson et al, 2006; Michelson
et al, 2001; Overtoom et al, 2003; Chamberlain et al, 2006).

Summary and Predictions

In sum, both DA and NA effects may be critical for
heterogeneous deficits in ADHD. It is plausible that DA
effects are involved in motivation/reward and working
memory updating, while NA effects are involved in response
inhibition and variability, supporting the independence of
these symptoms (Solanto et al, 2001). Based on the above
computational considerations, we make the following
predictions.

1. Deficits related to DA dysfunction (positive reinforce-
ment learning and working memory updating) should be
correlated with each other and should be similarly
improved by medications that increase DA.

2. Deficits related to NA dysfunction (reaction time
variability and erratic trial-to-trial exploratory behavior)
should be correlated with each other but should not be
improved by medications that increase DA.

3. These two kinds of deficits should be independent of one
another.

We tested these predictions in adults with ADHD and
healthy control participants. ADHD participants were tested
both on and off standard stimulant medications which
increase both DA and NA levels (Madras et al, 2005). In our
experiments, we tested two tasks: probabilistic selection
(two alternative forced-choice), and modified versions of
the widely-used AX-CPT working memory task. The
probabilistic selection task has been used previously to test
model predictions about individual differences in learning
from positive vs negative reinforcement in Parkinson
patients (Frank et al, 2004), healthy participants taking
DA agonists and antagonists (Frank and O’Reilly, 2006) and
electrophysiological correlates (Frank et al, 2005). The
AX-CPT working memory task (Servan-Schreiber et al,
1997; Barch et al, 1997, 2001) is used to test whether the
same Go/NoGo processes at work in the simpler procedural
learning tasks also apply to working memory updating, as
predicted by the models and supported by pharmacological
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manipulations in healthy individuals (Frank and O’Reilly,
2006). Importantly, our paradigms enable analysis that goes
beyond global impairment, by examining relative within-
subject differences between conditions that should be
differentially affected by DA. This approach is critical for
making specific predictions that are not susceptible to the
explanation of ADHD subjects simply not paying attention
to the overall task rules, which could potentially explain
deficits across a wide range of tasks.

EXPERIMENT

Reinforcement Learning Task

In the Probabilistic Selection task (Frank et al, 2004, 2005;
Frank and O’Reilly, 2006), three different stimulus pairs
(AB, CD, EF) are presented in random order and
participants have to learn to choose one of the two stimuli
(Figure 2). Feedback follows the choice to indicate whether
it was correct or incorrect, but this feedback is probabilistic.
In AB trials, a choice of stimulus A leads to correct
(positive) feedback in 80% of AB trials, whereas a B choice
leads to incorrect (negative) feedback in these trials (and
vice versa for the remaining 20% of trials). CD and EF pairs
are less reliable: stimulus C is correct in 70% of CD trials,
while E is correct in 60% of EF trials. Over the course of
training, participants learn to choose stimuli A, C, and E
more often than B, D, or F. Note that learning to choose A
over B could be accomplished either by learning that A
leads to positive feedback or that B leads to negative
feedback (or both). To evaluate whether participants
learned more about positive or negative outcomes of their
decisions, we subsequently tested them with novel combi-
nations of stimulus pairs involving either an A (AC, AD, AE,
AF) or a B (BC, BD, BE, BF); no feedback was provided. If

participants had learned more from positive feedback, they
should reliably choose stimulus A in all novel test pairs in
which it is present. On the other hand, if they learned more
from negative feedback, they should more reliably avoid
stimulus B. Indeed, we recently showed that avoidance of
stimulus B is associated with enhanced negative feedback
related brain potentials (Frank et al, 2005).

We hypothesized that, due to low striatal phasic DA
signals, ADHD participants would be impaired at positive
Go reinforcement learning and that this deficit would be
normalized by stimulant medications that increase DA.
These predictions are based on our models, DA manipula-
tions in other populations, and recent neuroimaging
data showing reduced striatal activation in ADHD
during anticipation of rewards (Scheres et al, 2006b). It is
important to note that we predict specific improvements in
Go learning. We predicted no improvements in NoGo
learning because, according to our model, low DA levels are
needed to learn NoGo responses (Frank, 2005). In contrast,
if improvements with medication are simply due to
increasing vigilance or attention, medication should im-
prove performance on both Go and NoGo learning. A
specific improvement on Go learning would have both
theoretical and practical implications because it would
suggest that ADHD participants on medication respond
more to positive incentives, and that negative reinforcement
or punishments may be less effective.

We also collected reaction time data in light of previous
findings that ADHD participants show more within-subjects
variability in reaction times (Leth-Steensen et al, 2000;
Castellanos et al, 2005). We hypothesized that the mechan-
ism for this variability is high tonic NA and that this would
also lead to more trial-to-trial erratic choice behavior during
training. We further predicted that this variability would not
be correlated with putative DA-related mechanisms.
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Figure 2 Probabilistic selection task and test results. (a) Example stimulus pairs (Japanese Hiragana characters), which minimize explicit verbal encoding.
Each pair is presented separately in different trials. Three different pairs are presented in random order; correct choices are determined probabilistically, with
the probability of positive reinforcement for selecting each stimulus shown in parentheses; negative (incorrect) reinforcement was delivered otherwise. (b)
Novel test pair results, where choosing A depends on having learned from positive reinforcement and avoiding B depends on having learned to avoid
negative reinforcement. As in previous studies, healthy performed equivalently in the two conditions. ADHD was associated with nonselective impairments
in the test phase. Medication selectively improved positive reinforcement learning, while having no effect on avoid-B performance, consistent with increases
in phasic DA in the basal ganglia. Error bars reflect standard error of the mean.
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Results and discussion: putative DA effects. Results were
broadly consistent with these predictions (Figure 2). Over-
all, there was no main effect of positive/negative test pair
condition (F(1, 35)¼ 2.2, NS). Relative to controls, OFF
ADHD participants were globally impaired at choosing
among novel test pairs (F(1, 35)¼ 6.2, p¼ 0.017), with no
test pair condition interaction (F(1,35)¼ 0.2). In particular,
OFF ADHD participants were impaired at both positive
(choose-A; F(1, 35)¼ 4.9, p¼ 0.03) and negative (avoid-B;
F(1, 25)¼ 3.7, p¼ 0.06) pairs. In contrast, ON ADHD
participants were unimpaired relative to controls
(F(1, 35)¼ 1.6, NS), and there was no interaction with test
pair condition (F(1, 35)¼ 1.3, NS). The main effect of
stimulant medication on test performance was not sig-
nificant (F(1, 35)¼ 2.1, NS). Nevertheless, further planned
comparisons revealed that medication significantly im-
proved positive/Go learning (F(1, 35)¼ 4.1, p¼ 0.05; effect
size d¼ 0.51), such that choose-A performance in ON
participants did not differ from controls (F(1, 35)¼ 0.18;
effect size d¼ 0.03). There was no effect of medication on
NoGo learning in ADHD (F(1, 35)¼ 0.03; d¼ 0.02). The
interaction between ADHD deficits and positive/negative
condition did not reach significance (F(1, 35)¼ 2.1,
p¼ 0.15). [A significant interaction requires the relative
within subject difference in Go vs NoGo learning to depend
on medication status. While this difference was on average
precisely zero in OFF participants (compared with 12%
difference in ON participants), the inclusion of poor
performers contributed substantial variability to this
measure. Indeed, after excluding participants who did not
perform better than chance levels during the test phase (this
filter excluded six OFF ADHD participants, two ON, and
five single sessions from controls), the interaction was
significant (F(1, 33)¼ 5.0, p¼ 0.03).]

The improvement in positive Go learning by stimulant
medication is consistent with predictions from our BG/DA
model, and is similar to patterns we observed in Parkinson’s
patients on DA medication (Frank et al, 2004), and in
healthy participants taking haloperidol, which at single low
doses increases phasic DA release (Frank and O’Reilly, 2006;
Wu et al, 2002). Our model further predicts that by
elevating tonic DA levels, stimulant medications may block

the effects of DA dips and could therefore even impair
NoGo learning (Frank, 2005), as seen with DA medications
in several other populations (see Frank and O’Reilly, 2006
and references therein). This prediction was not fully borne
out, in that ON participants were not worse than OFF
participants at NoGo learning. Nevertheless, NoGo learning
in ON participants was still relatively impaired compared
with controls (F(1.35)¼ 3.3, p¼ 0.08; d¼ 0.526), and in
fact was only marginally better than chance (50%) levels
(t(17)¼ 1.85, p¼ 0.08), making it difficult for them to
perform much worse. Thus, it remains possible that
deleterious effects of stimulant medication on NoGo
learning in ADHD were obscured by a floor effect.
Alternatively it is possible that the medications do not
sufficiently elevate tonic DA levels to effectively block NoGo
learning. Consistent with this hypothesis, recent rat studies
showed that stimulants selectively increased activity and
gene expression in striatal Go cells, with no effect on NoGo
cells (Yano and Steiner, 2005).

To further investigate the sources of impaired test
performance in ADHD, we examined performance in the
training phase. There was no main effect of group (ADHD
vs controls) on the number of training trials needed to
advance to the test phase (F(1, 35)¼ 1.5). Nevertheless,
planned comparisons revealed that OFF ADHD participants
required significantly more training trials (M¼ 258) than
controls (M¼ 177; F(1, 35)¼ 9.5, p¼ 0.004). Medication
sped up learning (F(1, 35)¼ 9.9, p¼ 0.003), such that
medicated participants (M¼ 173) did not differ from
controls (F(1, 35)¼ 0.02). Slowed learning in OFF ADHD
participants was also reflected in reduced accuracy across
training compared with controls (F(1, 35)¼ 9.5, p¼ 0.004;
Figure 3a). Again, participants ON medication were
unimpaired (F(1, 35)¼ 0.2), and the within-subject medica-
tion effect was significant (F(1, 35)¼ 8.5, p¼ 0.006).
Moreover, both controls and medicated participants differ-
entiated between reinforcement values of the training pairs
(AB, CD, EF), whereas ADHD participants OFF medication
did not (Figure 3b). Specifically, a within-subjects ANOVA
in the last block of training revealed a main effect of
training pair condition (AB, CD, EF) for controls
(F(2, 74)¼ 7.8, po0.001) and ADHD participants ON
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Figure 3 Probabilistic Selection training performance. (a) Overall accuracy during training was impaired in ADHD, and improved by medication. Impaired
accuracy in OFF ADHD participants was also associated with reduced tendency to choose the same stimulus after having been rewarded for choosing it on
the most recent trial of the same type (Win-Stay). No significant group differences were seen across in the tendency to modify choice behavior following
negative feedback (Lose-Shift). The nonsignificant increase in ADHD lose-shift measure was due to their more erratic behavior overall, switching their choice
behavior from trial to trial, independent of feedback (Figure 4). (b) Performance accuracy in the last block of training, broken down into the three training
pairs. ADHD participants OFF medication showed an inability to discriminate between the different contingencies; medication normalized performance.
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medication (F(2, 34)¼ 5.1, p¼ 0.01), but not those OFF
medication (F(2, 32)¼ 0.5). Thus, the impaired general-
ization of reinforcement values in the test phase could be
explained by deficits in learning of the original contingen-
cies in ADHD, as would be expected by reduced DA bursts.

To examine Go vs NoGo learning during training, we
analyzed trial-to-trial behavior as a function of positive and
negative feedback. There was a main effect of group, such
that following positive feedback, ADHD participants were
significantly less likely than controls to choose the same
stimulus in the next trial in which it appeared (win-stay;
Figure 3a; F(1, 35)¼ 4.9, p¼ 0.03). Planned comparisons
revealed that this effect was significant in OFF patients
(F(1, 35)¼ 7.1, p¼ 0.01), whereas those ON medication were
unimpaired in this measure (F(1, 35)¼ 2.3, NS). Conversely,
following negative feedback, there was no effect of group on
lose-shift performance (F(1, 35)¼ 1.8, NS). Participants OFF
medication were just as likely as controls to switch choices
in the subsequent trial of the same type (F(1, 35)¼ 1.0);
there was no effect of medication on this measure
(F(1, 35)¼ 0.2). Overall, these analyses are consistent with
a selective impairment in positive feedback learning
depending on phasic DA in ADHD.

Results and discussion: putative noradrenaline effects.
Why were ADHD participants impaired at avoid-B during
test, when they showed intact switching following negative
feedback during training? It is possible that intact switching
after negative feedback in ADHD participants was an
artifact of an overall greater tendency to switch, regardless
of the previous trial’s feedback. Such erratic switching
behavior is theoretically predicted by models of noradre-
nergic dysfunction (eg, Aston-Jones and Cohen, 2005;
McClure et al, 2006; Frank et al, in press), as discussed
above. Indeed, we found that ADHD participants switched
their responses from trial to trial more often than controls
(F(1, 35)¼ 4.24, p¼ 0.047; Figure 4a). This switching effect
was significant in the comparison between controls and
ADHD participants OFF medication (F(1, 35)¼ 5.62,
p¼ 0.02), with a similar trend for those ON medication

(F(1, 35)¼ 2.9, p¼ 0.1). Medication did not significantly
affect switching performance (F(1, 35)¼ 1.8, NS).

The same putative NA mechanism for erratic switching
should, according to models and experimental data, also
lead to increased reaction time variability (Usher et al, 1999;
Frank et al, in press). Mean RTs did not differ between OFF
participants and controls (F(1, 35)¼ 0.1). Medication actu-
ally slowed RTs (F(1, 35)¼ 15.8, p¼ 0.003), such that ON
patients were significantly slower to respond than controls
(F(1, 35)¼ 4.8, p¼ 0.03); this slowing may have enabled
patients to perform more accurately while on medication
(as in speed-accuracy tradeoff effects). To quantify RT
variability, we computed the within-subject RT standard
deviation in proportion to (ie, normalized by) the
individual’s mean RT. [This normalization results in a
relative measure of variability that is unconfounded by, and
controls for, overall differences in RT (since variability
necessarily increases with mean). Similar patterns of results
were observed with other measures of variability (eg,
standard deviations of log-transformed RTs.] Consistent
with a common noradrenergic mechanism for variability
and erratic switching, these measures were highly correlated
in ADHD participants OFF medication (r(17)¼ 0.71,
p¼ 0.001; Figure 4b), and to a lesser degree but still
significantly so in those ON medication (r(18)¼ 0.47,
p¼ 0.047). In contrast, these measures were not signifi-
cantly correlated in controls (r(38)¼ 0.18). Critically,
neither RT variability nor switching behavior were corre-
lated with choose-A performance (p’s40.25), supporting
our hypothesized independent DA and NA mechanisms for
reinforcement learning and switching/variability deficits in
ADHD.

To statistically determine whether the relationship
between switching and variability depends on ADHD and
medication status, we regressed RT standard deviation
against group, medication condition and percent switching,
including interactions between these factors and again
controlling for mean RT. This analysis revealed that RTs
were significantly more variable in OFF participants
(normalized variability¼ 52%) than controls (43%),
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(F(1, 35)¼ 5.5, p¼ 0.02). Medication significantly reduced
RT variability (F(1, 35)¼ 5.0, p¼ 0.03), such that controls
and ON participants (normalized variability¼ 46%) did not
differ (F(1, 35)¼ 0.1). The main effect of switching on RT
variability was significant (F(1, 35)¼ 5.1, p¼ 0.03), such
that increased switching was associated with increased RT
variability. Moreover, this effect was particularly strong in
OFF participants, as evidenced by significant interactions
with group (ADHD vs control; F(1, 35)¼ 7.3, p¼ 0.01), and
medication status (F(1, 35)¼ 7.1, p¼ 0.01). Overall these
results are consistent with the hypothesis that dysfunctional
NA processes in ADHD can lead to both variability and
switching behavior.

To explicitly demonstrate that the same high tonic NA
mechanism can account for these findings, we ran the same
model as in Frank et al (in press) with identical parameters
(tonic NA firing rate¼ 50% maximal) previously used to
account for RT variability. Fifty different networks with
different sets of random initial synaptic weights were
trained to choose among two probabilistically reinforced
responses (for simulation details and model equations, see
Frank et al (in press)). We then computed the percentage of
trials in which the models switched responses according to
trial type, regardless of previous feedback, as in the
behavioral analysis just reported. Notably, models in the
high tonic mode displayed more erratic switching than
those in the phasic mode, providing reasonably good
quantitative fits to the ADHD data (Figure 4a). Together
with our previously reported effects on RT variability, these
simulations show that the posited account of common NA
mechanisms for these effects is plausible.

Working Memory Task

Our models, together with support from a recent pharma-
cological study in healthy individuals, predict that the
striatal DA mechanisms involved in reinforcement learning
may also be important in the working memory domain
(Frank and O’Reilly, 2006). More specifically, we have
shown that the same Go/NoGo mechanisms that modulate
learning and action selection in other frontal regions can
also drive the updating of working memory representations
in parallel BG-PFC circuits (Frank et al, 2001; Frank, 2005;
O’Reilly and Frank, 2006). Go signals cause PFC to update
and maintain current sensory information, while NoGo
signals prevent updating, enabling robust ongoing main-
tenance of previously stored information. This account is
consistent with striatal activation observed during working
memory tasks (Lewis et al, 2004) and with working
memory/executive function deficits observed in various
patient populations with a BG locus, such as Parkinson’s
disease (Brown and Marsden, 1990; Owen et al, 1998; Cools
et al, 2006). We hypothesized that the reduction in BG DA
that led to motivational/reinforcement deficits in ADHD
would also cause reduced selective updating and subsequent
maintenance of task relevant information.

Although working memory is not always found to be
impaired in ADHD (Willcutt et al, 2005; Rhodes et al, 2005),
our models predict a more specific impairment in the gating
(rather than maintenance per se) of working memory
representations. Thus, working memory deficits should be
observed when distractors are presented during the delay

period, in which case BG gating function is particularly
critical for updating only task-relevant information to be
maintained. This prediction is consistent with the finding
that working memory manipulationFwhich requires se-
lective updating of some information while working on a
subset of a problemFis typically more impaired in ADHD
than maintenance (Martinussen et al, 2005); similar
updating/manipulation-specific deficits are observed in
Parkinson’s disease (see Cools, 2006). Finally, it is
important to provide a sensitive measure of working
memory deficits rather than a more general performance
effect that could arise for example from reduced vigilance.
Thus, we wanted to test the within-subject tendency to
weight internal (working memory) versus external (incom-
ing sensory stimulus) information in guiding responses.
Ideally, such a measure is independent of overall perfor-
mance, as an increased bias to weight working memory
representations may not always be beneficial to task
performance.

This notion is particularly evident in the ‘expectancy’
version of the AX-CPT (continuous performance task)
working memory task (Servan-Schreiber et al, 1997; Barch
et al, 1997, 2001), which we employ here. We also modified
the task to include a variable number of distractors during
the delay (Frank and O’Reilly, 2006). In the basic task, the
participant is presented with sequential letter stimuli
(A,X,B,Y; printed in red) and is asked to detect the specific
sequence of an A (cue) followed by an X (probe) by pushing
the right button (Figure 5). All other cue-probe combina-
tions (A–Y, B–X, B–Y) should be responded to with a left
button push. We used both short (1 s) and long (3 s) delays
between the cue and probe, with 0–3 distractors presented
during the long delay. In the expectancy version used here,
the target A–X sequence occurs on 70% of trials, setting up
a prepotent expectation of target responses (in contrast to
other CPT versions in which targets are presented on a
minority of trials); the other sequences are divided equally
by the remaining 30% of trials.

This task requires a relatively simple form of working
memory where the prior stimulus must be maintained over
a delay until the next stimulus appears, so that one can
discriminate the target from non-target sequences. More-
over, this task also allows analysis of the type of errors made
(Barch et al, 1997; Braver et al, 2001; Frank and O’Reilly,
2006). If participants successfully maintain contextual
information (eg, A) in working memory then they will
perform well at detecting the A–X target sequence but will
likely make more false positive errors on the A–Y sequence
(due to anticipation of an X). Context maintenance is
particularly critical for performance on the B–X case
because one has to maintain the B to know not to respond
to the X as a target. The B–Y sequence serves as a control
because neither the B or the Y are associated with the target.
Furthermore, because the A–X sequence occurs with high
(70%) probability, it is not as reliable an indicator of
working memory performance because participants can
simply learn a prepotent response to stimulus X. Thus, we
focus on the B–X and A–Y cases. Specifically, we compute a
working memory context index by subtracting percent A–Y
accuracy from that of B–X. A positive WM context index
indicates greater influence of working memory on choice
behavior, whereas a negative context index indicates that
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choices are being dictated by incoming stimuli and are not
influenced by working memory (Braver et al, 2001; Frank
and O’Reilly, 2006). [This index can also evaluate the
selective contribution of working memory, as opposed to
inhibition. That is, both B–X and A–Y cases require
suppressing or inhibiting a target response (because both
the X in B–X and the A in A–Y are usually associated with
targets in the vast majority of A–X sequences). Thus, the
context index computes difference between conditions that
both involve inhibition, but differ in working memory
effects.]

In our BG/PFC framework, we argue that BG Go signals
lead to the updating of PFC working memory representa-
tions and that DA enhances Go signals, leading to a lowered
updating threshold (Frank et al, 2001; Frank, 2005; see also
Weiner and Joel, 2002; Redgrave et al, 1999). Further, DA
bursts occur for task-relevant (ie, ‘positive’) information,
making this information more likely to become updated
and subsequently maintained (O’Reilly and Frank, 2006;
Frank and O’Reilly, 2006). Therefore, we hypothesized that
low levels of BG/DA in ADHD would be associated with
relatively worse B–X performance and better A–Y perfor-
mance than controls. By enhancing DA release during
bursting, stimulant medication should cause participants to
be more likely to update and maintain task-relevant
information in working memory. We further predicted that
these effects should be particularly evident when distractors
are presented during the delay, in which case BG gating
signals are necessary to update only task-relevant informa-
tion and to prevent the updating of distracting information.
Predictions for A–X target sequence performance are
somewhat more ambiguous, because while working mem-
ory gating can increase anticipation and detection of target
sequences, good A–X performance could also be accom-
plished simply by learning a prepotent target response to
the X stimulus (which is almost always associated with
target responses). Finally, we predicted no effect of ADHD
or medication on B–Y performance.

Results and discussion. Figures 5 and 6 show the results for
the standard A–X task with short delay, long delay, and long
delay with distractors. The patterns observed were con-
sistent with model predictions under various conditions,
with particular robustness under distractors: ADHD parti-
cipants OFF medication performed worst in A–X and B–X
trials, which benefit from maintenance of contextual
information in working memory. Importantly, these are
not global deficits: OFF participants were generally better
than the other groups at A–Y trials, where contextual
maintenance can cause false alarms in anticipation of the
prepotent A–X target. Moreover, DA medication reversed
all of these effects, improving A–X and B–X performance,
while causing more false alarms in A–Y sequences. Finally,
B–Y performance, which is not affected by working
memory, was similarly good across groups and conditions.

These results were supported by the working memory
context index analysis. In the short delay condition, the WM
context index was significantly reduced in ADHD partici-
pants relative to controls (F(1, 35)¼ 8.1, p¼ 0.007). The
within-subject effect of medication in ADHD was not
significant (F(1, 35)¼ 0.9). Our inclusion of distractors in
some long delay trials was meant to test the role of BG/DA
gating of PFC WM representations (Frank and O’Reilly,
2006). Specifically, without gating signals to update and
robustly maintain task-relevant information in PFC, dis-
tractors would be more likely to interfere with WM
representations, leading to a reduced working memory
context index. Indeed, WM context index was significantly
reduced when distractors were present compared to long
delay trials without distractors (F(1, 35)¼ 11.1, p¼ 0.002).
The reduced context index under distractors was margi-
nally worse in OFF ADHD participants compared with
controls (F(1, 35)¼ 2.8, p¼ 0.1; Figure 5), with no difference
between ADHD and controls when no distractors were
present (F(1, 35)¼ 0.1). Moreover, medication significantly
increased WM context index under distractors
(F(1, 35)¼ 6.5, p¼ 0.015), consistent with an increase in
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Figure 5 The CPT-A–X task. (a) Short delay, no distractors. Stimuli are presented one at a time in a sequence. The participant responds by pressing the
right key (R) to the target sequence, otherwise a left key (L) is pressed. Delay between each stimulus is 1 s. The A–X target sequence occurs on 70% of trials,
building up a prepotent expectation for target responses. (b) Variable distractors. Task is the same as in (a) but anywhere from zero to three distractors are
presented sequentially during a 3 s delay period. Participants have to respond to distractors with a left button push, but are told to ignore these for the
purpose of target detection. In a subsequent attentional-shift, the target sequence consists of previously distracting number stimuli (1–3), and the letter
stimuli are now distractors. (c) A–X working memory results for Short (1 s), Long (3 s) delay, and Long + Distractors condition. WM context index¼
B–X�A–Y, measuring maintenance of context information (A, B) in working memory. As predicted, ADHD was associated with reduced WM context
index, which was improved by stimulant medication. This is consistent with increased DA bursting for task-relevant stimuli, reinforcing BG Go signals to
update prefrontal cortex working memory representations.
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phasic DA signals that support working memory gating of
task-relevant information in the face of distractors.

More insight comes from analysis of the individual trial
types. First, in the short delay condition, B–X performance
did not differ between OFF participants and controls
(F(1, 35)¼ 1.4, NS), or between medication conditions in
ADHD (F(1, 35)¼ 0.6). Similarly, there was no effect of
ADHD on B–X performance in long delay trials without
distractors (F(1, 35)¼ 0.8). This lack of B–X effect in the
short delay and no distractors suggests that BG/DA gating
signals are not as essential for WM processes under these
conditions, consistent with the lack of ADHD impairments
in fast rate-CPT more generally (Chee et al, 1989). However,
when distractors were included in long-delay trials,
significant B–X deficits were observed in OFF participants
relative to controls (F(1, 35)¼ 4.7, p¼ 0.037). Critically,
these deficits were significantly improved by DA medication
(F(1, 35)¼ 9.0, p¼ 0.005), such that ON participants’ BX
performance in the face of distractors did not differ from
that of controls (F(1, 35)¼ 0.2).

For A–Y, as noted above, performance can suffer from
enhanced working memory context maintenance. Indeed,
A–Y performance was significantly better in OFF ADHD
participants than controls in short delay trials
(F(1, 35)¼ 4.5, p¼ 0.04). Medication marginally worsened
performance and caused more false alarms (F(1, 35)¼ 2.9,
p¼ 0.09), such that ON participants’ A–Y performance did
not differ from that of controls (F(1, 35)¼ 0.1). Thus,
although gating signals may not be necessary for context
maintenance under these short delay conditions, enhanced
Go signals (in healthy conditions, or via DA medication in
ADHD) can nevertheless increase anticipation of A–X
target sequences and therefore cause A–Y false alarms.

Consistent with this depiction, medication improved A–X
target detection in both short delay (F(1, 35)¼ 3.8, p¼ 0.06),
and long delay trials (F(1, 35)¼ 8.3, p¼ 0.007). A–X
target performance was not impaired in ADHD participants
relative to controls in either short (F(1, 35)¼ 1.0) or
long delay trials (F(1, 35)¼ 0.7). These results again
support the notion that working memory gating is not as
essential for performing well on prepotent A–X target
sequences but that enhanced BG/DA gating signals can
nevertheless cause more preparatory anticipation and
therefore better performance. Finally, there was no differ-
ence between ADHD participants and controls in B–Y
performance (F(1, 35)¼ 0.04) and no effect of medication
(F(1, 35)¼ 0.66).

Relationship between Reinforcement Learning and
Working Memory in ADHD

As described above, our models predict that the same
mechanism of reduced striatal DA, acting on different
fronto-striatal circuits, leads to ADHD-related deficits in
both positive reinforcement learning and working memory
gating. Our results were consistent with this notion: both
deficits were observed and were ameliorated by stimulant
medications that increase DA levels. If deficits on both tasks
arise from a common mechanism, a stronger prediction is
that performance on the two measures should be correlated
and similarly affected by DA manipulation. First, we found
that in nonmedicated participants, positive reinforcement
‘Go’ learning (choose-A) performance was correlated with
performance in B–X working memory sequences under
distractors (r(18)¼ 0.52, p¼ 0.027), but not when no
distractors were present (r(18)¼�0.08). This is consistent
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Figure 6 Performance in individual trial types of the working memory task, across delay conditions in ADHD and control participants.
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with the notion that striatal Go signals are necessary for
gating of information to be robustly maintained in the face
of ongoing interference (Frank et al, 2001), as measured by
the B–X distractor condition, and that selective gating is less
critical when no distractors are present. Furthermore,
striatal NoGo signals are also important in the models for
preventing the gating of distractors into working memory
(O’Reilly and Frank, 2006), such that distractor perfor-
mance may also correlate with impaired NoGo learning in
ADHD. Indeed, aversive ‘NoGo’ reinforcement learning
(avoid-B) performance was correlated with accuracy in the
B–X distractor condition (r(18)¼ 0.59, p¼ 0.01), and not
when no distractors were present (r(18)¼�0.26, NS).
Overall, these analyses support the notion that both Go
and NoGo mechanisms are critical for updating task-
relevant information and preventing it from subsequent
interference.

More specific predictions come from analysis of medica-
tion effects on learning and working memory. We
hypothesized that the mechanism by which medication
improves working memory is via increases in phasic DA
and associated striatal Go signals. This hypothesis predicts
that the extent to which medications selectively improved
positive reinforcement learning (depending on phasic DA)
should be predictive of their improvement working memory
gating. We therefore computed the correlation between
medication improvements in Go relative to NoGo reinforce-
ment learning (choose-A relative to avoid-B; this difference
should reflect improvements due to phasic DA increases)
and their improvement in B–X trials with distractors.
Indeed, relative Go-NoGo improvements were significantly
correlated with B–X accuracy improvements under dis-
tractors (r(15)¼ 0.59, p¼ 0.02; Figure 7), and not in B–X
trials without distractors (r(15)¼�0.13, NS). Further,
improvements in A–X performance under distractors were
not correlated with relative Go reinforcement learning
improvements (r(15)¼�0.12, NS), again supporting the
notion that good A–X performance can result simply from a
prepotent bias to respond to the X, and is not critically
dependent on working memory gating. Finally, there were
also no significant correlations between improvements in
B–X and those in putative noradrenergic effects of reaction
time variability or switching behavior (p’s40.1 and 0.4,
respectively), supporting our previous analysis that positive
Go learning performance also did not correlate with these
measures (p’s40.25).

GENERAL DISCUSSION

Taken together, our findings support a unified neurocom-
putational account of cognitive and motivational deficits in
ADHD. First, ADHD participants were impaired at positive
reinforcement learning (in both training/test measures) and
selective working memory gating, supporting our models’
suggestion that both of these processes depend on
dopamine signals within the basal ganglia (Frank, 2005;
O’Reilly and Frank, 2006), which are reduced in ADHD.
Second, these impairments were reversed by stimulant
medications which enhance DA levels and associated
striatal Go signals (eg, Yano and Steiner, 2005), particularly
in conditions that depend on phasic DA in our models.

These include positive reinforcement learning and B–X
performance under distracting conditions in the working
memory task. Critically, the extent to which medications
improved Go reinforcement learning was correlated with
their efficacy in improving working memory gating,
suggestive of common DA mechanisms. Third, ADHD
participants also showed erratic behavioral switching from
trial to trial, which was correlated with increased reaction
time variability. Both of these effects are predicted by
neurocomputational models of NA dysfunction (Aston-
Jones and Cohen, 2005; McClure et al, 2006; Frank et al, in
press) and were also observed when selectively manipulat-
ing NA in our model (Figure 4). Finally, supporting our
hypothesis for independent mechanistic sources of DA and
NA dysfunction, putative DA deficits were uncorrelated
with putative NA deficits.

In the discussion that follows, we address the DA and NA
hypotheses in turn, before commenting on the combined
theory and relationship to other theories of ADHD.

Basal Ganglia/Dopamine

As reviewed above, various lines of evidence point to DA
dysfunction in the basal ganglia of ADHD participants. By
virtue of interactions with multiple frontal circuits, it is
possible that this single low-level mechanism may be
responsible for diverse behavioral effects at the systems
level. Specifically, reduced striatal DA signals would
decrease Go signals for reinforcing appropriate motor
behaviors represented in pre/motor regions (Frank, 2005).
Similarly, by interacting with prefrontal regions, Go signals
are particularly important for selectively updating task-
relevant information to be robustly maintained, especially
in the face of ongoing distractors (Frank et al, 2001; O’Reilly
and Frank, 2006). [Without BG Go signals, cortico-cortical
projections can still allow a sensory stimulus to reach and
activate PFC. However, without the gating signal this
information is less robustly maintained, and will be more
susceptible to interfering effects of any subsequent dis-
tractor.] Thus, reduced striatal Go signals may lead to
apparent hypofrontality due to reductions in the selective
maintenance of task-relevant relative to distracting
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information. Further, the same effects may apply with
respect to ventral striatum and the updating of orbitofrontal
working memory representations of reward value (see
Frank and Claus, 2006). In this case, DA reductions would
lead to impairments in the updating and subsequent
maintenance of large magnitude, long-term reward values
to bias behavior and motivational processes. This account is
consistent with a steeper and shorter delay-of-reinforce-
ment gradient in ADHD (Sagvolden et al, 1998), and with
observations that reinforcement motivation needs to be
particularly high in ADHD participants (Luman et al, 2005).
More generally, our hypothesized common mechanism for
reinforcement and working memory deficits from a
modeling perspective is consistent with Sagvolden et al’s
(2005) suggestion that working memory and delay of
reinforcement gradient effects in ADHD are linked through
reduced dopaminergic efficacy. Support for our particular
mechanism comes from a recent study showing that
stimulants induce striatal Go activity and learning, which
is highly correlated with enhanced frontal cortical gene
expression in specific cortico-striatal circuits (Yano and
Steiner, 2005).

There may be alternative explanations for working
memory deficits in ADHD. For example, it is possible that
ADHD participants showed excessive, rather than reduced,
updating. In this case, participants would be more likely to
update distractor stimuli, which could lead to distractibility
by interfering with previously updated information. This
seems unlikely, particularly given that reduced WM was
observed when no distractors were presented in the short
delay condition. In contrast, other pharmacological data are
more consistent with this overall increased BG updating/
distractibility in the same tasks. Specifically, we tested
healthy participants taking the drug cabergoline, a D2
agonist that should cause excessive updating (by inhibiting
the NoGo pathway and lowering the threshold for Go
responses; Frank and O’Reilly, 2006). In that case,
participants also showed impaired WM performance under
distractors, but better performance in the short delay zero-
distractor conditionFin which case enhanced BG updat-
ing/facilitation of working memory representations can
only help. Thus, our finding here that ADHD participants
showed reduced WM context index in both short delay and
distractor conditions is more consistent with reduced BG
Go signals for gating WM representations.

A second alternative is that maintenance itself, rather
than updating, is impaired in ADHD. However, a main-
tenance deficit would predict that WM performance is
increasingly impaired with increasing delay (even in the
absence of distractors). This was clearly not the case in our
data: if anything WM performance was better in the long
delay without distractors than in the short delay case. Thus,
the most parsimonious account of our data, and consistent
with the reinforcement learning data, is that ADHD is
associated with reduced BG Go signals for gating informa-
tion to be maintained in PFC.

Comparison with parkinson’s disease. One problem with
the hypodopaminergic hypothesis usually unaddressed is
why are not low DA levels in ADHD associated with
Parkinson-like symptoms? First, it is likely that tonic DA
levels are much lower in Parkinson’s, given that symptoms

do not arise until DA is depleted by approximately 75–80%.
Second, whereas Parkinson’s patients simply do not have
DA available, DA synthesis and availability should be intact
in ADHD. Individuals with ADHD may try to self-regulate
and increase their DA levels, as seen in rats who self
administer more amphetamine when DA receptors are
partially blocked pharmacologically (Robbins and Everitt,
1999). Intriguingly, ADHD participants may achieve these
DA increases by their own hyperactive movements (Frank
et al, in press): matrix neurons in the dorsal striatum
involved in motor selection may disinhibit DA release via
striatonigral projections (eg, Joel and Weiner, 2000). These
motor-induced increases in DA levels would not be detected
by neuroimaging studies, which require subjects to remain
still in the scanner; nevertheless, the hypothesis is
supported by observations that more hyperactive children
have higher striatal D2 receptor binding (Jucaite et al,
2005), which may reflect low tonic DA during rest. More
generally, this account is consistent with theories positing
that hyperactivity is a compensatory process for the lack of
external stimulation (eg, Barkley, 1997; Sonuga-Barke,
2003).

Another question that arises from our reinforcement
learning data is why negative feedback (avoid-B) perfor-
mance was impaired in OFF ADHD participants relative to
controls, given their low levels of striatal DA (which should
facilitate NoGo learning). Indeed, Parkinson’s patients
actually showed somewhat better NoGo learning (Frank
et al, 2004). This discrepancy is potentially explained by (i)
far lower DA levels and (ii) supersensitivity of D2 receptors
in Parkinson’s disease (eg, Rinne et al, 1990). This
combination would make striatal neurons in PD particularly
sensitive to DA dips for learning to avoid negative
outcomes, even in the presence of tonically low DA levels
(for discussion see Frank and O’Reilly, 2006). Further, we
have argued that the most relevant comparison for testing
specific predictions is the within subject effect of controlled
manipulations, because other factors can contribute to
overall performance differences in patient groups (Frank
et al, 2004). In this study, we found that stimulant
medication enhanced Go but not NoGo learning in ADHD.
Moreover, trial-to-trial analysis during training revealed
selective ADHD deficits in positive reinforcement learning,
consistent with reduced DA levels.

Noradrenaline

Although DA dysfunction in ADHD is well supported,
growing evidence also points to NA dysfunction (Russell
and Wiggins, 2000; Russell et al, 2000; Swanson et al, 2006;
Michelson et al, 2001; Overtoom et al, 2003). In particular,
standard stimulants such as amphetamine and methylphe-
nidate increase both DA and NA levels by acting on
reuptake transporters for both neurotransmitters (Madras
et al, 2005; Berridge et al, 2006). Interestingly, whereas the
dopamine transporter density is very high in striatum and
very low in prefrontal cortex, the opposite relationship is
observed for the noradrenaline transporter (eg, Madras
et al, 2005). Thus, it is likely that therapeutic effects of NA
manipulation in ADHD are primarily mediated in frontal
cortex. This possibility fits nicely with computational
models and associated neurophysiological experiments

Testing computational models of dopamine
MJ Frank et al

1593

Neuropsychopharmacology



which show that phasic NA release in frontal cortex is
associated with periods of focused attention, infrequent
target detection, and good task performance (Aston-Jones
and Cohen, 2005). These authors simulated these effects by
having NA modulate the gain of the activation function in
cortical response units (Usher et al, 1999), showing that
phasic NA release leads to ‘sharper’ cortical representations
and a tighter distribution of reaction times. In contrast, a
relatively high tonic (but low phasic) NA state during
periods of poor task performance was associated with more
RT variability in both their models and monkey behavioral
data. They further hypothesized that this NA state during
poor performance may be adaptive, in that it may enable the
representation of alternate competing cortical actions
during exploration of new behaviors.

As previously noted, this model has clear implications for
NA dysfunction in ADHD (Frank et al, in press). In
particular, a high tonic/low phasic NA state in ADHD would
lead to noisier frontal cortical representations, which could
cause variability in reaction times, via effects in pre/motor
areas. Indeed, various studies show that ADHD participants
show increased within-subject reaction time variability
(Leth-Steensen et al, 2000; Lijffijt et al, 2005; Castellanos
et al, 2005). Interestingly, the same NA mechanism also
predicts that noise in frontal motor representations may
cause erratic exploratory behavior, or in other words,
reduced consistency of choice responses. In the present
study we found compelling support for this account: not
only were ADHD participants more likely to display erratic
switching in their behavioral choices from trial to trial, but
increased switching behavior was correlated with increased
variability in reaction times, supporting a common NA
source for these behavioral effects and captured in our
model.

Our NA account contrasts with a tentative proposal that
RT variability in ADHD stems from DA mechanisms that
cause low frequency (multisecond) neural oscillations in BG
circuits (Castellanos et al, 2005). However, in the rat studies
on which that theory is based, slow BG oscillations
depended on an increase in DA (Ruskin et al, 2003),
whereas ADHD is associated with reduced DA. Further, in
primates, slow BG oscillations were unaffected by DA
manipulation (Wichmann et al, 2002). Other accounts
suggest that variability in ADHD could arise from inefficient
learning, due to slower ability to develop predictable
behavior and unlearn ineffective responses (Sagvolden
et al, 2005). In our models, poor Go learning associated
with reduced DA might indirectly lead to RT variability: in
the absence of efficacious BG Go signals, noisy cortical
activity could have a greater effect on network behavior.
Nevertheless, it is this noisy activity itself that is thought to
be enhanced under conditions of high tonic NA. In effect,
we suggest that reduced BG/DA signals do not themselves
cause variability but could nevertheless potentially ‘reveal’
the more direct effects of NA on cortical noise and
associated variability. [Indeed, the high tonic NA simulated
in the models to produce RT variability was carried out
after learning had been successfully achieved and was tested
across 5000 trials during which no further learning occurred
(Frank et al, in press). This demonstrates that high tonic NA
is sufficient in and of itself to account for variability,
without requiring dynamic interactions with trial to trial

learning effects.] This more direct effect of NA on variability
is consistent with data from a recent study measuring
urinary excretion of catecholamine metabolites in children
with ADHD, which showed that RT variability correlated
with NA, but not DA, metabolites (Llorente et al, 2006).

To more directly test whether DA depletion in humans
could account for RT variability in the same task reported
here, we analyzed data from PD patients from Frank et al
(2004). These data provide an opportunity to test a key
prediction: whereas DA levels are reduced in both PD and
ADHD, tonic NA levels are thought to be high in ADHD but
are depleted in PD (Hornykiewicz and Kish, 1987; Bertrand
et al, 1997). Thus, if RT variability stems from reduced DA
levels, then this variability should also be seen in PD.
However, if high tonic NA is the primary source of
variability, then if anything variability should be reduced
in PD patients, due to low NA levels. Indeed, nonmedicated
PD patients showed somewhat reduced normalized RT
variability compared with controls (F(1, 26)¼ 2.7, p¼ 0.11),
an effect that was significant when compared with
medicated PD patients (F(1, 26)¼ 4.7, p¼ 0.04). This
medication effect can be explained by observations that
PD-related medication enhance NA levels (eg, Stryjer et al,
2005), thereby counteracting NA depletion in PD, and
increasing RT variability. Taken together, ours and other
results, including metabolite studies in human ADHD
participants and direct LC/NA recordings in monkeys
(Llorente et al, 2006; Usher et al, 1999), suggest that RT
variability in ADHD stems from high tonic NA levels and is
unlikely to be accounted for by DA depletion.

Note that although there may be intrinsic NA dysfunction
in ADHD, this need not be the case. It is plausible that a
high tonic/low phasic NA state is encountered as a
secondary reaction to deficits caused by other related
mechanisms, such as reduced striatal facilitation of
responses, reduced grey matter, disorganization of repre-
sentations, and associated poor task performance. Similarly,
increases in NA by atomoxetine could compensate for these
other deficits.

Relationship to Theories on the Independence of
Cognitive and Motivational Deficits in ADHD

Others have proposed theories to explain the independence
of cognitive and motivational deficits in ADHD, based on
behavioral evidence showing that response inhibition
deficits are independent from motivational deficits (Solanto
et al, 2001). In particular, Sonuga-Barke (2003) and
Castellanos et al (2006) propose a dual-pathway model,
which implicates separate cortico-striatal circuits in moti-
vational (‘hot’) and executive (‘cool’) dysfunction in ADHD.
Specifically, response inhibition deficits are proposed to
reflect damage to prefrontal-dorsal striatal circuits, whereas
motivational and reward deficits stem from dysfunction in
ventral striatal-orbitofrontal (OFC) circuits.

Our theory has important similarities and differences
with that of Castellanos et al (2006). First, central to both
accounts is a core motivational deficit in ADHD. Second,
our models are broadly consistent with the proposed
neurobiological underpinnings: we have explicitly simulated
the contributions of the striatum, orbitofrontal cortex and
dopamine to motivation, reward learning, and decision

Testing computational models of dopamine
MJ Frank et al

1594

Neuropsychopharmacology



making (Frank and Claus, 2006). This model suggests that
reduced DA in striato-orbitofrontal circuits would lead to
impaired representation of large rewards, consistent with
evidence that orbitofrontal areas are involved in the
selection of large delayed rewards over smaller but more
immediate rewards (Mobini et al, 2002; McClure et al,
2004). Disruption of this circuitry is supported by evidence
that ADHD participants are often found to have an
unusually strong preference for small immediate rewards
over larger delayed rewards (Sonuga-Barke, 2005; but see
Scheres et al, 2006a).

Despite the commonalities among our models, we
maintain that striatal DA reduction in ADHD may be a
common source of both these ‘hot’ motivational deficits as
well as the ‘cool’ working memory deficits (see also
Sagvolden et al, 2005). Increased DA transporter expression
in ADHD (Dougherty et al, 1999; Krause et al, 2000) would
presumably lead to non-selectively reduced DA across the
entire striatum, leading to impairments in functions
depending on multiple cortico-striatal circuits. We suggest
that a more likely source of symptom independence is a
completely different mechanism than DA, and propose NA
to be one such mechanism. Of course other independent
mechanisms are possible, such as the consistently reduced
grey matter in the cerebellum (see Krain and Castellanos,
2006). Even within the DA system, differential dopaminer-
gic genes have been shown to affect prefrontal versus
striatal volume (Durston et al, 2005), and these could also
lead to dissociable symptoms.

An obvious prediction of our theory is that if one were to
independently manipulate DA and NA levels in ADHD,
dissociations could be observed for the two kinds of
behavioral effects. Presently, this may be difficult: most
stimulant medications, including the variants taken by
participants in this study, elevate both DA and NA levels
(Madras et al, 2005). While the newer drug atomoxetine acts
preferentially on the NA transporter (Michelson et al, 2001)
and increases frontal NA levels, it also increases PFC DA
levels (via indirect effects on the NA transporter; Bymaster
et al, 2002; Madras et al, 2005). Nevertheless, this drug does
not elevate DA levels in striatum, where the NA transporter
is scant (Bymaster et al, 2002; Madras et al, 2005). Thus one
might predict that in contrast to other medications,
atomoxetine should not selectively improve positive relative
to negative reinforcement learning. Rather, by modulating
PFC DA, the drug could improve vigilance and lead to better
performance overall. In addition, by modulating PFC NA,
the drug should have more reliable effects on RT variability
and erratic switching behavior.

Finally, it is plausible that NA cortical effects are involved
in response inhibition deficits (in addition to variability and
erratic behavior), whereas BG/DA effects are involved in
motivational/reward processes, supporting the indepen-
dence of these symptoms (Solanto et al, 2001). This notion
is consistent with recent evidence that atomoxetine
improves response inhibition (eg, Swanson et al, 2006;
Michelson et al, 2001; Overtoom et al, 2003; Chamberlain
et al, 2006). However, the current evidence does not rule out
a role for DA in inhibition, given the beneficial effects of
traditional stimulants on inhibition, which could act via DA,
NA or a combination of the two. Evidence for a BG role in
inhibition is suggested by observations that children with

ADHD show reduced striatal activation when responses are
to-be-inhibited (eg, Durston et al, 2003). We are currently
investigating the interactions of NA effects in premotor
cortical regions with BG/DA effects in our models.
Ultimately, a robust model will investigate interactions
between these various systems.

Conclusions

In summary, our results demonstrate the usefulness of
neurocomputational approaches for hypothesis generation
and testing in ADHD, which may have both practical and
theoretical implications. For example, if replicated in
younger children, our reinforcement learning results may
have implications for motivational strategies in parents and
teachers of medicated ADHD participants. Our findings and
models suggest that these participants may respond much
better to reward-based motivations then to punishments.
Theoretically, our framework suggests a common dopami-
nergic mechanism for reinforcement learning and working
memory deficits and an independent noradrenergic me-
chanism for reaction time variability and erratic behavior.
We look forward to future genetic, neuroimaging, and
pharmacological research with behavioral paradigms such
as those used in the present study to test these ideas.

METHODS

Procedures were approved by the University of Colorado
Human Research Committee.

Participants

Eighteen ADHD participants and 21 controls who did not
differ in age or SAT scores (p’s40.25). were included.
ADHD participants (11 men, 7 women) ranged in age from
18 to 22 (M¼ 20, s¼ 1.49), with a mean SAT score of 1194.
All participants with ADHD had a current prescription for
stimulant medication to treat ADHD symptoms, as pre-
scribed by their physician. These medications included
methylphenidate (N¼ 3), pemoline (N¼ 1), amphetamine
(N¼ 1), and an amphetamine–dextroamphetamine combi-
nation (N¼ 13). All participants completed two sessions
and were paid 30 dollars for each session. ADHD
participants were tested in two sessions, once on medication
and once off medication, with the order counterbalanced
across participants. For the off-medication session, partici-
pants abstained from taking their medication for a
minimum of 24 h before the session. Twenty one control
participants volunteered by signing up on a website
advertising paid experiments at the University of Colorado
at Boulder, and completed two sessions, not on medication
for either session. Control participants completed a screen-
ing measure on which they rated each of the nine DSM-IV
inattention symptoms and nine DSM-IV hyperactivity-
impulsivity symptoms on a 0–3 scale (Barkley and Murphy,
1998). We excluded participants who rated at least six
symptoms from either category (inattentive or hyperactive)
2 or higher. Two participants were excluded using these
criteria. The remaining 19 control participants (8 men, 11
women) ranged in age from 18 to 22 years (M¼ 20, s¼ 1.43)
and had a mean SAT score of 1225.
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In addition to the tasks described here, participants also
completed other tasks to address questions about the
relationship between time perception and working memory
in ADHD, to be reported later (Santamaria et al, in
preparation). The order of these tasks was counterbalanced
across participants.

Reinforcement Learning Task

Procedures for this task have been described elsewhere
(Frank et al, 2004; Frank and O’Reilly, 2006). Briefly,
participants sit in front of a computer screen in a lighted
room and view pairs of visual stimuli that are not easily
verbalized (Japanese Hiragana characters, see Figure 2).
These stimuli are presented in black on a white background,
in 72 pt font. They press keys on the left or right side of the
keyboard depending on which stimulus they choose to be
‘Correct’. Note that the forced-choice nature of the task
controls for any differences in overall motor responding.
Visual feedback is provided (duration 1.5 s) following each
choice (the word ‘Correct!’ printed in blue or ‘Incorrect’
printed in red). If no response is made within 4 s, the words
‘no response detected’ are printed in red.

We enforced a performance criterion (evaluated after
each training block of 60 trials) in an attempt to equate
training performance at the time of test. Because of the
different probabilistic structure of each stimulus pair, we
used a different criterion for each (65% A in AB, 60% C in
CD, 50% E in EF). (In the EF pair, stimulus E is correct 60%
of the time, but this is particularly difficult to learn. We
therefore used a 50% criterion for this pair simply to ensure
that if participants happened to ‘like’ stimulus F at the
outset, they nevertheless had to learn that this bias was not
going to consistently work.) The participant advanced to the
test session if all these criteria were met, or after six blocks
(360 trials) of training. The test session involved presenting
the same training pairs in addition to all novel combina-
tions of stimuli, in random sequence. They were instructed
(prior to the test phase) to use ‘gut instinct’ if they did not
know how to respond to these novel pairs. Each test pair
was presented six times for a maximum of four seconds
duration, and no feedback was provided.

Working Memory Procedures

The participant is presented with sequential letter stimuli
(A,X,B,Y) printed in red, and is asked to detect the specific
sequence of an A (cue) followed by an X (probe) by pushing
the right button. All other cue-probe combinations (A–Y,
B–X, B–Y) should be responded to with a left button push.
The target A–X sequence occurs on 70% of trials, and the
other sequences are divided equally by the remaining 30%
of trials. The working memory segment begins with the
standard task with no distractors and an inter-stimulus
interval of one second. Each stimulus is presented for
500 ms. There are 50 sequences in the standard task.

Next, subjects were told to continue looking for the A–X
target sequence, and to ignore any distractor stimuli (single
white digits (1,2,3,4)) that may appear during a 3-s cue-
probe delay interval. Each stimulus is presented for 500 ms,
and the delay between stimuli and probes is 3 s. Anywhere
from 0 to 3 distractors are presented during the delay

period for 333 ms each. The distractors are spaced out
evenly throughout the 3 s delay period. When one distractor
is presented, there is a 1333-ms delay between the cue and
the distractor and between the distractor and the target. For
two distractors, the delay between each item is 778 ms. For
three distractors, it is 500 ms. Participants have to respond
to each distractor with a left button push to ensure that they
encode them, but are told to ignore them for the purpose of
target detection (Braver et al, 2001; Frank and O’Reilly,
2006). In this long delay/distractor segment, there are 128
trials of which 80 are target sequences.

All results are presented across all trials. In actuality,
subjects were instructed to respond to a different target
sequence in different blocks of the experiment (Frank and
O’Reilly, 2006). For simplicity, ‘A–X’ performance refers to
performance on target sequences, ‘A–Y’ performance refers
to performance on non-targets that share the first stimulus
cue with the target, etc. Note that the results do not depend
on this averaging across blocks (except for the greater
number of trials); all the patterns reported held in just the
first block in which targets were always A–X.

Data Analysis

In order to be consistent across all data analyses, we
performed the same statistical test for each analysis. We
used SAS v8.0 PROC MIXED to examine both between and
within subject differences, using unstructured covariance
matrices (which does not make any strong assumptions
about the variance and correlation of the data, as do
structured covariances). In all analyses, we controlled for
session number (Frank and O’Reilly, 2006). In the
procedural learning tasks, another factor of positive/
negative test condition was included, whereas in the
working memory segments, a distractor factor was in-
cluded. In the reaction time variability analyses, we
included a switching factor term and its interactions with
group and medication status, to determine whether the
coupling between switching and variability depended on
ADHD and medication status. Where indicated, we tested
for specific planned contrasts. In these contrasts, the
number of degrees of freedom reflects the entire sample,
and not just the participants involved in the particular
contrast, because the mixed procedure analyzes both
between and within effects, and controls for other variables
of interest (eg, session) that apply across all participants.
This procedure uses all of the data to provide a more stable
estimate of the error term.
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